0
RESEARCH PAPERS

Vibration of a Spinning Cylindrical Shell With Internal/External Ring Stiffeners

[+] Author and Article Information
Shyh-Chin Huang, Lin-Hung Chen

Department of Mechanical Engineering, National Taiwan Institute of Technology, 43, Keelung Road, Sec. 4, Taipei, Taiwan 106, R.O.C.

J. Vib. Acoust 118(2), 227-236 (Apr 01, 1996) (10 pages) doi:10.1115/1.2889653 History: Received May 01, 1993; Online February 26, 2008

Abstract

The paper presents an approach to the vibration analysis of a spinning cylindrical shell with internal, symmetric, or external ring stiffeners. A modified receptance method for spinning structures is employed in this analysis. Various numerical examples are demonstrated and the results are compared with the existing data. The effects of types, numbers of stiffeners and of spin speed on the shell frequencies are extensively discussed. The results show that for no spin the ring stiffeners stiffen only then > 1 modes (n–circumferential wave number), and the stiffening effect become more significant with the increasing n number. With spin, the rings stiffen the forward modes in a way similar to the non-spin cases. The backward modes are however all stiffened by the attached rings for all n values. Among the three types of rings, on backward modes, the internal rings always have a better stiffening effect, then the symmetric and the external rings. As to the forward modes, as spinning speed increases, the external rings raise the shell’s frequencies faster than the others due to the largest centrifugal force. At last, the effects of the ring’s location, stiffness, and mass density on the frequency changes are examined. Numerical results show that the sensitivity of the shell’s frequencies to these parameters increases with the spin speed. Among the shell modes, the lower n modes are affected more by these parameters.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In