0
RESEARCH PAPERS

Modal Parameter Estimation for Piezostructures

[+] Author and Article Information
D. G. Cole, W. R. Saunders, H. H. Robertshaw

Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

J. Vib. Acoust 117(4), 431-438 (Oct 01, 1995) (8 pages) doi:10.1115/1.2874475 History: Received July 01, 1993; Revised January 01, 1994; Online February 26, 2008

Abstract

This paper is motivated by the need for consistency between piezostructure measurements and existing modal analysis approaches. Fundamental relationships are developed which reveal that the existing framework of traditional modal analysis approaches can be used to estimate modal parameters which describe the piezostructure dynamics. The modal analysis technique is a frequency domain method where the relationship between pole-residue models for conventional structures and piezostructures is developed. Since typical arrangements of piezoelectric sensors and actuators for modal testing lead to ambiguous mode shape estimates, the use of sensoriactuator transducers provides critical drive-point response information. Also, the existence of a transformation between the structure’s modal matrix and the piezostructure’s electromechanical coupling matrix is shown. It is shown that combining the results of a traditional modal test and a piezostructure modal test enables a modal filtering operation which produces experimental measurements of the electromechanical coupling matrix. This method of modal analysis of a piezostructure is demonstrated numerically for a cantilevered beam.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In