Dynamic Response Analysis in End Milling Using Pretwisted Beam Finite Element

[+] Author and Article Information
C.-L. Liao, J.-S. Tsai

Department of Mechanical Engineering, National Taiwan Institute of Technology, Taipei, Taiwan, R. O. C.

J. Vib. Acoust 117(1), 1-10 (Jan 01, 1995) (10 pages) doi:10.1115/1.2873862 History: Received October 01, 1992; Revised September 01, 1993; Online February 26, 2008


This paper develops an analytical model to estimate the dynamic responses in end milling, i.e., dynamic milling cutter deflections and cutting forces, by using the finite element method along with an adequate end milling cutting force model. The whole cutting system includes spindle, bearings and cutter. The spindle is structurally modeled with the Timoshenko-beam element, the milling cutter with the pretwisted Timoshenko-beam element due to its special geometry, and the bearings with lumped springs and dampers. Because the damping matrix in the resulting finite element equation of motion for the whole cutting system is not of proportional damping due to the presence of bearing damping, we use state-vector approach and convolution integral to find the solution of equations of motion. To assure the accuracy of dynamic response predication, the associated cutting force model should be sufficiently precise. Since the dynamic cutting force is proportional to the chip thickness, a quite accurate algorithm for the calculation of chip thickness variation due to tool geometry, runout and spindle-tool vibration is developed. A number of dynamic cutting forces and tool deflections obtained from the present model for various cutting conditions are compared with the experimental and analytical results available in the literature, and good agreement is demonstrated for these comparisons. Therefore the present model is useful for the prediction of end milling instability. Also, the tool deflections obtained by using the pretwisted beam element are found smaller than those by straight beam elements without pretwist angle. Hence, neglecting the pretwist angle in the structural model of milling cutter may overestimate the tool deflections.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In