0
RESEARCH PAPERS

Navier-Stokes Computations of Cavity Aeroacoustics with Suppression Devices

[+] Author and Article Information
Oktay Baysal, Guan-Wei Yen, Kamran Fouladi

School of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529

J. Vib. Acoust 116(1), 105-112 (Jan 01, 1994) (8 pages) doi:10.1115/1.2930385 History: Received April 01, 1992; Online June 17, 2008

Abstract

Effectiveness of two devices to suppress the cavity acoustics was computationally investigated. Two dimensional, computational simulations were performed for the transonic, turbulent flows past a cavity, which was first equipped with a rear face ramp and then with a spoiler. The Reynolds-averaged, unsteady, compressible, full Navier-Stokes equations were solved time accurately by a second-order accurate, implicit, upwind, finite-volume method. The effect of turbulence was included through the Baldwin-Lomax model with modifications for the multiple-wall effects and for the highly vortical flow with a shear layer. The results included instantaneous and time-averaged flow properties, and time-series analyses of the pressure inside the cavity, which compared favorably with the available experimental data. These results were also contrasted with the computed aeroacoustics of the same cavity (length-to-depth ratio of 4.5), but without a device, to demonstrate the suppression effectiveness.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In