0
RESEARCH PAPERS

Optimal Design of Active and Semi-Active Suspensions Including Time Delays and Preview

[+] Author and Article Information
A. Hać, I. Youn

Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794

J. Vib. Acoust 115(4), 498-508 (Oct 01, 1993) (11 pages) doi:10.1115/1.2930378 History: Received June 01, 1992; Revised November 01, 1992; Online June 17, 2008

Abstract

Several control laws for active and semi-active suspension based on a linear half car model are derived and investigated. The strategies proposed take full advantage of the fact that the road input to the rear wheels is a delayed version of that to the front wheels, which in turn can be obtained either from the measurements of the front wheels and body motions or by direct preview of road irregularities if preview sensors are available. The suspension systems are optimized with respect to ride comfort, road holding and suspension rattle space as expressed by the mean-square-values of body acceleration (including effects of heave and pitch), tire deflections and front and rear suspension travels. The optimal control laws that minimize the given performance index and include passivity constraints in the semi-active case are derived using calculus of variation. The optimal semi-active suspension becomes piecewise linear, varying between passive and fully active system and combinations of them. The performances of active and semi-active systems with and without preview were evaluated by numerical simulation in the time and frequency domains. The results show that incorporation of time delay between the front and rear axles in controller design improves the dynamic behavior of the rear axle and control of body pitch motion, while additional preview improves front wheel dynamics and body heave.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In