0
RESEARCH PAPERS

Structural Modal Multifurcation With International Resonance: Part 1—Deterministic Approach

[+] Author and Article Information
R. A. Ibrahim, A. A. Afaneh, B. H. Lee

Wayne State University, Department of Mechanical Engineering, Detroit, MI 48202

J. Vib. Acoust 115(2), 182-192 (Apr 01, 1993) (11 pages) doi:10.1115/1.2930329 History: Received October 01, 1991; Online June 17, 2008

Abstract

The bifurcation and multifurcation in multimode interaction of nonlinear continuous structural systems is investigated. Under harmonic excitation the nonstationary response of multimode interaction is considered in the neighborhood of fourth-order internal resonance condition. The response dynamic characteristics are examined via three different approaches. These are the multiple scales method, numerical simulation, and experimental testing. The model considered is a clamped-clamped beam with initial static axial load. Under certain values of the static load the first three normal modes are nonlinearly coupled and this coupling results in a fourth-order internal resonance. The method of multiple time scales yields nonstationary response in the neighborhood of internal resonance. Within a small range of internal detuning parameter the third mode, which is externally excited, is found to transfer energy to the first two modes. Outside this region, the response is governed by a unimodal response of the third mode which follows the Duffing oscillator characteristics. The bifurcation diagram which represents the boundaries that separate unimodal and mixed mode responses is obtained in terms of the excitation level, damping ratios, and internal resonance detuning parameter. The domains of attraction of the two response regimes are also obtained. The numerical simulation of the original equations of motion suggested the occurrence of complex response characteristics for certain values of damping ratios and excitation amplitude. Both numerical integration and experimental results reveal the occurrence of multifurcation as reflected by multi-maxima of the response probability density curves.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In