Propagation of Impact-Induced Longitudinal Waves in Mechanical Systems With Variable Kinematic Structure

[+] Author and Article Information
A. A. Shabana

Department of Mechanical Engineering, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680

W. H. Gau

Department of Mechanical Engineering, Huafan Institute of Technology, Taipei, Taiwan, R.O.C.

J. Vib. Acoust 115(1), 1-8 (Jan 01, 1993) (8 pages) doi:10.1115/1.2930309 History: Received July 01, 1990; Revised June 01, 1991; Online June 17, 2008


In previous publications by the authors of this paper it was shown that elastic media become dispersive as the result of the coupling between the finite rotation and the elastic deformation. Impact-induced harmonic waves no longer travel, in a rotating rod, with the same phase velocity and consequently the group velocity becomes dependent on the wave number. In this investigation, the propagation of impact-induced longitudinal waves in mechanical systems with variable kinematic structure is examined. The configuration of the mechanical system is identified using two different sets of modes. The first set describes the system configuration before the change in the system topology, while the second set describes the configuration of the system after the topology changes. In the analysis presented in this investigation, it is assumed that collision between the system components occurs first, followed by a change in the system topology. Both events are assumed to occur in a very short-lived interval of time such that the system configuration does not appreciably change. By using the first set of modes, the jump discontinuity in the system velocities is predicted using the algebraic generalized impulse momentum equations. The propagation of the impact-induced wave motion after the change in the system topology is described using the Fourier method. The series solution obtained is used to examine the effect of the topology change on the propagation of longitudinal elastic waves in constrained mechanical systems. It is shown that, while, for a nonrotating rod, mass capture or mass release has no effect on the phase and group velocities, in rotating rods the phase and group velocities depend on the change in the system topology. In particular the phase velocities of low harmonic longitudinal waves are more affected by the change in the system topology as compared to high frequency harmonic waves.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In