Active Control of High Order Acoustical Modes in a Semi-Infinite Waveguide

[+] Author and Article Information
J. D. Stell, R. J. Bernhard

Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Vib. Acoust 113(4), 523-531 (Oct 01, 1991) (9 pages) doi:10.1115/1.2930217 History: Received August 01, 1990; Online June 17, 2008


This paper presents an analysis of the effectiveness of active noise control methods for control of high order modes in rigid-walled, semi-infinite waveguides. The waveguides examined in this investigation are terminated at one end with a rigid end. The case studies performed reconfirmed that n control actuators can control n propagating modes (including the plane wave) in a waveguide if the actuators are properly placed. The results also confirmed that the control actuators should be located at the node surfaces of the most significant evanescent modes to avoid various problems that evanescent modes cause active control systems. A significant new finding is the effect of the rigid waveguide termination on the active controller. The reflected energy from the termination causes standing waves in the region between the rigid termination and the secondary sources. At certain frequencies which correspond to resonant conditions, the standing wave amplitudes become large and the control actuator strength must be high. At these frequencies the effects of the evanescent modes become significant even when the mode is not close to its cut-on frequency. Similar resonant effects can be expected to affect active noise control performance for any case where there are significant reflections in the waveguide upstream of the control actuators.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In