0
RESEARCH PAPERS

Active Control for Vibration Suppression in a Flexible Beam Using a Modal Domain Optical Fiber Sensor

[+] Author and Article Information
D. E. Cox, D. K. Lindner

Fiber & Electro—Optics Research Center, Bradley Department of Electrical Engineering, Virginia Tech, Blacksburg, VA 24061

J. Vib. Acoust 113(3), 369-382 (Jul 01, 1991) (14 pages) doi:10.1115/1.2930194 History: Received July 01, 1990; Online June 17, 2008

Abstract

In this paper we discuss the use of a modal domain optical fiber sensor (MD sensor) as a component in an active control system to suppress vibrations in a flexible beam. An MD sensor consists, roughly, of a laser source, an optical fiber, and detection electronics. The basic operating principles of this sensor are reviewed and a model of this sensor is derived. It is shown that the output of an MD sensor is proportional to the integral of the axial strain along the optical fiber. Since we use a significant length of fiber for sensing, this sensor is called a distributed-effect sensor. When an MD sensor is attached to, or embedded in, a flexible structure, it will sense the strain in the structure along its gage length. Here we integrate the sensor model into the model for a flexible structure. Based on this system model, a control system with a dynamic compensator is designed to add damping to the low order modes of the flexible structure. To verify the modeling procedure an experiment was conducted. The experimental setup consisted of a cantilevered beam with a piezoelectric actuator and an MD sensor. A simulation of the experiment was developed based on the component models. It is shown that experimental responses closely match simulated responses for both open loop and closed loop tests. The experiment also incorporated several recent advances for practical MD sensor implementation including lead-in/lead-out insensitive fibers and elliptical core sensing fiber.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In