Centrifugal-Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing

[+] Author and Article Information
D. W. Childs

Turbomachinery Laboratories, Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

J. Vib. Acoust 113(2), 209-218 (Apr 01, 1991) (10 pages) doi:10.1115/1.2930171 History: Received January 01, 1990; Online June 17, 2008


An analysis is presented for the perturbed flow in the leakage path between a shrouded-pump impeller and its housing. A bulk-flow model is used for the analysis consisting of the path-momentum, circumferential-momentum, and continuity equations. Shear stress at the impeller and housing surfaces are modeled according to Hirs’ turbulent lubrication model. The governing equations have been used earlier to examine rotordynamic reaction forces developed by lateral and axial impeller motion. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leakage rate, and the velocity and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to axial or lateral motion of the impeller. Prior analyses by the author of the perturbation equation have examined the reaction forces on the shroud due to rotor motion. These analyses have produced “resonance” phenomena associated with the centrifugal-acceleration body forces in the fluid field. In the present analysis, an algorithm is developed and demonstrated for calculating the complex eigenvalues and eigenvectors associated with these resonances. First-and second-natural-frequency eigensolutions are presented for mode shapes corresponding to lateral excitation. First-natural-frequency eigensolutions are also presented for mode shapes corresponding to axial excitation.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In