0
RESEARCH PAPERS

The Measurement of Nonlinear Damping in Single-Degree-of-Freedom Systems

[+] Author and Article Information
H. J. Rice, J. A. Fitzpatrick

Department of Mechanical Engineering, Trinity College, Dublin, Ireland

J. Vib. Acoust 113(1), 132-140 (Jan 01, 1991) (9 pages) doi:10.1115/1.2930147 History: Received March 01, 1989; Online June 17, 2008

Abstract

The measurement and correct modelling of damping is of crucial importance in the prediction of the dynamical performance of systems for a wide range of engineering applications. In most cases, however, the experimental methods used to measure damping coefficients are extremely basic and, in general, poorly reported. This paper shows that damping is a deceptive parameter which is prone to subtle nonlinear distortion which often appears to satisfy general linear criteria. An efficient experimental method which provides for the measurement of both the linear and nonlinear damping for a single-degree-of-freedom system is proposed. The results from a numerical simulation study of a model with “drag” type quadratic damping are shown to give reliable estimates of parameters of the system when both random and impulse excitation techniques are used.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In